Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Ethyl 4-hydroxy-2,6-diphenyl-5-(phenylsulfanyl)pyridine-3-carboxylate and ethyl 2,6-bis(4-fluorophenyl)-4-hydroxy-5-(4-methylphenyl-sulfanyl)pyridine-3-carboxylate: supramolecular aggregation through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \boldsymbol{\pi}$ interactions

J. Suresh, ${ }^{\text {a }}$ R. Suresh Kumar, ${ }^{\text {b }}$ S. Perumal, ${ }^{\text {b }}$ A. Mostad ${ }^{\text {c }}$ and S. Natarajan ${ }^{\text {d }}$

${ }^{\mathbf{a}}$ Department of Physics, The Madura College, Madurai 625011 , India, ${ }^{\mathbf{b}}$ School of Chemistry, Madurai Kamaraj University, Madurai 625021 , India, ${ }^{\text {c }}$ Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo 3, Norway, and ${ }^{\mathbf{d}}$ Department of Physics, Madurai Kamaraj University, Madurai 625 021, India Correspondence e-mail: s_natarajan50@yahoo.com

Received 14 December 2006
Accepted 3 January 2007
Online 31 January 2007
The title polysubstituted pyridines, ethyl 4-hydroxy-2,6-diphenyl-5-(phenylsulfanyl)pyridine-3-carboxylate, $\quad \mathrm{C}_{26} \mathrm{H}_{21}-$ $\mathrm{NO}_{3} \mathrm{~S}$, (I), and ethyl 2,6-bis(4-fluorophenyl)-4-hydroxy-5-(4-methylphenylsulfanyl)pyridine-3-carboxylate, $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{~S}$, (II), adopt nearly planar structures. The crystal structure of (I) is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate rings of motifs $R_{2}^{2}(14)$ and $R_{2}^{2}(20)$. The crystal structure of (II) is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ bond generates a linear chain of motif $C(14)$. In addition, in (I) and (II), intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions generating a graph-set motif $S(6)$ are found. No significant aryl-aryl or $\pi-\pi$ interactions exist in these structures.

Comment

Pyridines are of great interest because of the occurrence of their saturated and partially saturated derivatives in biologically active compounds and natural products such as NAD

(I)

(II)
nucleotides, pyridoxol (vitamin B6) and pyridine alkaloids (Balasubramanian \& Keay, 1996). Substituted pyridines have
also found a number of applications, viz. as anticorrosion agents, insecticides and as potential drug substances (Keney, 1968; Goodhue, 1967; Cooke et al., 1998). In this context, the synthesis of polysubstituted pyridines has been an active research area for many years in our laboratory. The present work reports the X-ray crystallographic study of two such substituted pyridines, viz. (I) and (II) (see scheme).
The molecular structures of (I) and (II) are shown in Figs. 1 and 2, respectively, and selected geometric parameters are given in Tables 1 and 3, respectively. In (I) and (II), the pyridine heterocycles are planar; the displacements of the atoms from their mean planes do not exceed 0.043 (2) \AA. None of the substituted groups forming a plane is either

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are represented as small spheres of arbitrary radii.

Figure 2
The molecular structure of (II), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms are represented as small spheres of arbitrary radii.

organic compounds

coplanar with or orthogonal to the pyridine ring. The dihedral angles of the phenylsulfanyl group at C5, the ethoxycarbonyl group at C 3 and the benzene ring at C 2 with the pyridine ring are $76.2,37.8$ and 43.7°, respectively, in (I), and 83.6 (1), 46.4 (1) and $39.2(1)^{\circ}$, respectively, in (II). The phenylsulfanyl group is cis to the benzene ring at C6, with dihedral angles of $62.6(1)^{\circ}$ in (I) and 70.5 (2) ${ }^{\circ}$ in (II). The C5-S1 bond [1.769 A in (I) and $1.770 \AA$ in (II)] is slightly shorter than the C51-S1 bond [1.782 \AA in (I) and $1.778 \AA$ in (II)], which may be due to the conjugation of atom S1 with the pyridine ring. Similarly, the C7-O3 bond [1.335 \AA in (I) and $1.332 \AA$ in (II)] is longer

Figure 3
A partial packing view, showing the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (dashed lines) in compound (I). H atoms are shown as small spheres of arbitrary radii. H atoms not involved in hydrogen-bonding interactions have been omitted for clarity. [Symmetry codes: (i) $-x, y-\frac{1}{2}$, $\frac{1}{2}-z$; (ii) $-x,-y,-z$; (iii) $1-x,-y, 1-z$.]

Figure 4
The packing of the molecules of (I), showing the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (dashed lines) within the unit cell, viewed down the a axis. H atoms are shown as small spheres of arbitrary radii. H atoms not involved in hydrogen-bonding interactions have been omitted for clarity.
than the $\mathrm{C} 7-\mathrm{O} 2$ bond [$1.222 \AA$ in (I) and $1.203 \AA$ in (II)] and considerably shorter than C8-O3 [1.462 A in (I) and $1.468 \AA$ in (II)], which demonstrates the conjugation of atom O 3 with C7-O2.

The crystal structure of (I) is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. The $\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{O} 2$ and $\mathrm{C} 65-\mathrm{H} 65 \cdots \mathrm{O} 3$ interactions form cyclic dimers, generating rings of graph-set motifs $R_{2}^{2}(14)$ and $R_{2}^{2}(20)$, respectively (Etter et al., 1990) (Table 2 and Fig. 3). The intramolecular hydrogen bond found between the hydroxyl and carboxylate groups ($\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$) (Table 2 and Fig. 3) generates a graph-set motif $S(6)$. Two weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, viz. $\mathrm{C} 22-\mathrm{H} 22 \cdots C g 1^{\mathrm{i}}$ and $\mathrm{C} 8-\mathrm{H} 8 B \cdots C g 2^{\text {ii }}(C g 1$ and Cg2 are the centroids of rings C51-C56 and C61-C66, respectively; symmetry codes are given in Table 2) are observed. No $\pi-\pi$ interactions or significant aryl-aryl inter-

Figure 5
A partial packing view, showing the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonding (dashed lines) in compound (II). H atoms are shown as small spheres of arbitrary radii. H atoms not involved in hydrogen-bonding interactions have been omitted for clarity. [Symmetry codes: (i) $x-\frac{1}{2}$, $-y+\frac{3}{2}, z-\frac{1}{2}$.]

Figure 6
The packing of the molecules of (II), showing the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (dashed lines) within the unit cell, viewed down the b axis. H atoms are shown as small spheres of arbitrary radii. H atoms not involved in hydrogen-bonding interactions have been omitted for clarity.
actions are observed. The molecular packing in the unit cell is shown in Fig. 4.

The crystal structure of (II) is stabilized by a weak C$\mathrm{H} \cdots \mathrm{F}$ interaction. This C57-H57C $\cdots \mathrm{F} 1$ interaction (Table 4 and Fig. 5) forms a linear chain generating a $C(14)$ graph-set motif. An intramolecular hydrogen bond found between the hydroxyl and carboxylate groups ($\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$) (Table 4 and Fig. 5) generates an $S(6)$ graph-set motif. The supramolecular aggregation is completed by the presence of a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction (Table 4). The molecular packing in the unit cell is shown in Fig. 6. The geometry of the $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction was obtained from PLATON (Spek, 2003)

Experimental

For the preparation of (I), dichlorodicyanobenzoquinone (DDQ-H2; $0.105 \mathrm{~g}, 0.4 \mathrm{mmol}$) was added to a solution of ethyl 4-hydroxy-2,6-diphenyl-5-(phenylsulfanyl)-1,2,5,6-tetrahydropyridine-3-carboxylate $(0.1 \mathrm{~g}, 0.2 \mathrm{mmol})$ in benzene $(10 \mathrm{ml})$, and the mixture was refluxed in a water bath for 30 min . The precipitated DDQ-H2 was filtered off and the filtrate evaporated under vacuum. The residue was recrystallized from ethanol to give (I) (yield $0.072 \mathrm{~g}, 73 \%$; m.p. 421-422 K). For the preparation of (II), DDQ-H2 $(0.094 \mathrm{~g}, 0.4 \mathrm{mmol})$ was added to a solution of ethyl 2,6-bis(4-fluorophenyl)-4-hydroxy-5-[(4-me-thylphenyl)sulfanyl]-1,2,5,6-tetrahydropyridine-3-carboxylate (0.1 g , $0.2 \mathrm{mmol})$ in benzene (10 ml), and the mixture was refluxed in a water bath for 30 min . The precipitated DDQ-H2 was filtered off and the filtrate evaporated under vacuum. The residue was recrystallized from ethanol to give (II) (yield $0.071 \mathrm{~g}, 72 \%$; m.p. $380-381 \mathrm{~K}$).

Compound (I)

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=427.50$
Monoclinic, $P 2_{1} / c$
$a=10.3728$ (2) \AA
$b=17.1008$ (4) \AA
$c=12.9444$ (3) \AA
$\beta=111.041(1)^{\circ}$
$V=2143.02(8) \AA^{3}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1998)
$T_{\text {min }}=0.97, T_{\text {max }}=0.979$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.112$
$S=1.02$
5325 reflections
280 parameters
H -atom parameters constrained
Table 1
Selected bond lengths (\AA) for (I).

S1-C5	$1.7693(13)$	O3-C8	$1.4622(16)$
S1-C51	$1.7819(14)$	O2-C7	$1.2216(16)$
O3-C7	$1.3350(16)$		

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$) for (I).
$C g 1$ and $C g 1$ are the centroids of rings C51-C56 and C61-C66, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.82	2.04	2.7450 (16)	144
$\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{O} 2^{\text {i }}$	0.93	2.59	3.3168 (18)	136
$\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.46	3.3446 (17)	158
C65-H65 . $\mathrm{O}^{\text {3ii }}$	0.93	2.59	3.4008 (18)	146
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{Cg} 1^{\text {iii }}$	0.93	2.89	3.6647 (15)	142
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{Cg} 2^{\text {iv }}$	0.97	2.75	3.6458 (16)	154

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x,-y,-z$; (iii) $-x+1,-y,-z+1$; (iv) $x+1, y, z$.

Compound (II)

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{~S}$
$Z=4$
$M_{r}=477.52$
Monoclinic, $P 2_{1} / n$
$a=12.092$ (1) \AA
$D_{x}=1.357 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.18 \mathrm{~mm}^{-1}$
$b=10.489$ (1) \AA
$T=293$ (2) K
$c=18.496$ (2) \AA
Block, colourless
$\beta=94.78(1)^{\circ}$
$0.18 \times 0.16 \times 0.12 \mathrm{~mm}$
$V=2337.7$ (4) \AA^{3}

Data collection

Nonius MACH3 four-circle diffractometer
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.992, T_{\text {max }}=0.995$
4815 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.128$
$S=1.01$
4097 reflections
310 parameters
H -atom parameters constrained
Table 3
Selected bond lengths (\AA) for (II).

32101 measured reflections
5325 independent reflections
4855 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=28.3^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0504 P)^{2}\right. \\
& \quad+1.7947 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.84 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.78 \mathrm{e}^{-3}
\end{aligned}
$$

Table 4
Hydrogen-bond geometry ($\AA,{ }^{\circ}$) for (II).
Cg1 is the centroid of the C51-C56 ring.

4099 independent reflections
2764 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=25.0^{\circ}$
3 standard reflections
frequency: 60 min
intensity decay: none

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0654 P)^{2}\right. \\
\quad+0.8462 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.011 \\
\Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array} \text { ® }^{2} 0.41 \mathrm{e} \AA^{-3}
\end{aligned}
$$

S1-C5	$1.770(2)$	O3-C7	$1.322(3)$
S1-C51	$1.778(3)$	O3-C8	$1.468(3)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.203(3)$		

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{O} 2$	0.82	2.09	$2.782(3)$	142
C57-H57C $\cdots \mathrm{F1}^{\mathrm{i}}$	0.96	2.51	$3.393(4)$	153
C22-H22 \cdots 1 $^{\text {ii }}$	0.93	2.97	$3.749(3)$	143

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $-x+2,-y+1,-z+1$.

H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for CH_{2} and CH groups, $1.5 U_{\text {eq }}$ for CH_{3} groups and $1.5 U_{\text {eq }}(\mathrm{O})$ for OH groups.

organic compounds

Data collection: SMART (Bruker, 2001) for (I); CAD-4 EXPRESS (Enraf-Nonius, 1994) for (II). Cell refinement: SAINT (Bruker, 2001) for (I); CAD-4 EXPRESS for (II). Data reduction: SAINT for (I); XCAD4 (Harms \& Wocadlo, 1996) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank the UGC for SAP programmes. JS thanks the UGC and the management of The Madura College, Madurai, for providing a Teacher Fellowship. SP thanks CSIR, New Delhi, for a Major Research Project.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN3034). Services for accessing these data are described at the back of the journal.

References

Balasubramanian, M. \& Keay, J. G. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 5, edited by A. R. Katritzky, C. W. Rees \& E. F. V. Scriven, pp. 245-300. London: Pergamon.
Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART (Version 6.12) and SAINT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Cooke, J. W., Coleman, M. J., Caine, D. M. \& Jenkins, K. P. (1998). Tetrahedron Lett. 39, 7965-7966
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256 262.

Goodhue, L. D. (1967). US Patent No. 3325355.
Harms, K. \& Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Keney, B. R. (1968). US Patent No. 3404094.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, $351-$ 359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

